

NAMIBIA UNIVERSITYOF SCIENCE AND TECHNOLOGY

or science and reculiocodi

Faculty of Health, Applied Sciences and Natural Resources

Department of Agriculture and Natural Resources Sciences

QUALIFICATION: Bachelor of Natural Resource Management Honours				
QUALIFICATION CODE: 08BNRH LEVEL: 8				
COURSE: Conservation Biology	COURSE CODE: CSB810S			
DATE: June 2022	SESSION: June			
DURATION: 3 (three) hours	MARKS: 100			

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER				
EXAMINER(S)	Dr T. Nzuma			
MODERATOR:	Prof. H. Ndagurwa			

THIS QUESTION PAPER CONSISTS OF 3 PAGES

(Excluding this front page)

INSTRUCTIONS

- 1. Answer ALL the questions.
- 2. Write clearly and neatly.
- 3. Number the answers clearly.

PERMISSIBLE MATERIALS

- 1. Examination paper.
- 2. Examination script.
- 3. Calculator.

Quest	Question 1		
Defin	e the following ecological terms, using examples.		
1.1	Alpha diversity	[2]	
1.2	Bequest value	[2]	
1.3	Biodiversity hotspot	[2]	
1.4	Connectedness	[2]	
1.5	Demographic stochasticity	[2]	
1.6	Habitat fragmentation	[2]	
1.7	Edge effect	[2]	
1.8	Environmental stochasticity	[2]	
1.9	Genetic stochasticity	[2]	
1.10	Umbrella species	[2]	
Quest	ion 2	[20]	
Should	Should Management of Biodiversity be Species-Based or Ecosystem-Based? Discuss		

Question 3 [20]

Think of a dam on a river in any part of Namibia. What effects would the removal of this dam have on the: (1) local economy; (2) flow regime of the river; and (3) movement of fish and other aquatic organisms? Considering these factors, would it be a good idea to remove this dam?

[20]

Question 4 [40]

Diversity indices provide important information about the rarity and commonness of species in a community. The ability to quantify diversity in this way is an important tool for biologists trying to understand community structure. Using the data below sampled from the Namib karoo biome;

Species	Site A	Site B	Site C	Site D	Site E
Zophosis orbicularis	3	1	16	6	0
Cheroides spp.	2	0	1	1	16
Gonocephalum spp.	0	0	77	39	0
Branchinotogluma sandersi	0	0	0	4	1
Himatismus spp.	0	0	6	0	0
Lepidonotopodium piscesae	0	0	0	2	3
Stips stali	3	0	13	34	0
Paralvinella pandorae	1	1	2	4	0
Physadesmia globosa	1	1	11	0	7
Amphisamytha galapagensis	0	0	0	14	0
Gonocephalum spp.	0	0	15	2	5
Depressigyra globulus	0	0	9	0	0
Onymacris laeviceps	0	0	22	9	0
Physadesmia spp.	0	3	3	21	45

Note: All answers should be to 3 decimal places.

a. Calculate species richness for the five sites/habitats.

[5]

b. Calculate species diversity using Simpson's diversity index for the 5 habitats. Show all your working and interpret your findings giving one possible ecological reason for the differences in diversity.

THE END

Total Marks: 100